Greedy scheduling of cellular self-replication leads to optimal doubling times with a log-Frechet distribution.
نویسنده
چکیده
Bacterial self-replication is a complex process composed of many de novo synthesis steps catalyzed by a myriad of molecular processing units, e.g., the transcription-translation machinery, metabolic enzymes, and the replisome. Successful completion of all production tasks requires a schedule-a temporal assignment of each of the production tasks to its respective processing units that respects ordering and resource constraints. Most intracellular growth processes are well characterized. However, the manner in which they are coordinated under the control of a scheduling policy is not well understood. When fast replication is favored, a schedule that minimizes the completion time is desirable. However, if resources are scarce, it is typically computationally hard to find such a schedule, in the worst case. Here, we show that optimal scheduling naturally emerges in cellular self-replication. Optimal doubling time is obtained by maintaining a sufficiently large inventory of intermediate metabolites and processing units required for self-replication and additionally requiring that these processing units be "greedy," i.e., not idle if they can perform a production task. We calculate the distribution of doubling times of such optimally scheduled self-replicating factories, and find it has a universal form-log-Frechet, not sensitive to many microscopic details. Analyzing two recent datasets of Escherichia coli growing in a stationary medium, we find excellent agreement between the observed doubling-time distribution and the predicted universal distribution, suggesting E. coli is optimally scheduling its replication. Greedy scheduling appears as a simple generic route to optimal scheduling when speed is the optimization criterion. Other criteria such as efficiency require more elaborate scheduling policies and tighter regulation.
منابع مشابه
Improve Replica Placement in Content Distribution Networks with Hybrid Technique
The increased using of the Internet and its accelerated growth leads to reduced network bandwidth and the capacity of servers; therefore, the quality of Internet services is unacceptable for users while the efficient and effective delivery of content on the web has an important role to play in improving performance. Content distribution networks were introduced to address this issue. Replicatin...
متن کاملCatalytic Buffering for Optimal Scheduling of Self-Replication
We study the scheduling problem of a self-replicating factory. We show that by maintaining a sufficiently large inventory of intermediate metabolites and catalysts required for self-replication, optimal replication times can be achieved by a family of random scheduling algorithms that are biochemically feasible, for which catalysts never idle if they can perform de-novo bio-synthesis. Optimally...
متن کاملAn Iterated Greedy Algorithm for Flexible Flow Lines with Sequence Dependent Setup Times to Minimize Total Weighted Completion Time
This paper explores the flexile flow lines where setup times are sequence- dependent. The optimization criterion is the minimization of total weighted completion time. We propose an iterated greedy algorithm (IGA) to tackle the problem. An experimental evaluation is conducted to evaluate the proposed algorithm and, then, the obtained results of IGA are compared against those of some other exist...
متن کاملA new approach in graph- based integrated production and distribution scheduling for perishable products
This study is concerned with how the quality of perishable products can be improved by shortening the time interval between production and distribution. As special types of food such as dairy products decay fast, the integration of production and distribution scheduling (IPDS) is investigated. An integrated scheduling of both processes improves the performance and costs because the separated sc...
متن کاملOn-Line Scheduling with Precedence Constraints
We consider the on-line problem of scheduling jobs with precedence constraints on m machines. We concentrate in two models, the model of uniformly related machines and the model of restricted assignment. For the related machines model, we show a lower bound of (p m) for the competitive ratio of deterministic and randomized on-line algorithms, with or without preemptions even for known running t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 8 شماره
صفحات -
تاریخ انتشار 2015